The tailored physical properties of TiO2 are of significant importance in various fields and, as such, numerous methods for modifying these properties have been introduced. In this study, we present a novel method for doping Fe into TiO2 via the anodic dissolution of iron. The optimal conditions were determined to be an application of 200 V to acetylacetone (acac)/EtOH medium for 10 min, followed by the addition of TiO2 to the solution, sonication for 30 min, stirring at 80 °C, and drying. The resulting powder was calcined at 400 °C for 3 h, and characterization was conducted using XRD, FTIR, TEM, and UV-vis. The synthesized powder revealed the successful doping of Fe into the TiO2 structure, resulting in a decrease in the optical band gap from 3.22 to 2.92 eV. The Fe-TiO2 was then deposited on a metal substrate via the electrophoretic (EPD) technique, and the weight of the deposited layer was measured as a function of the applied voltage and exposure time. FESEM images and EDX analysis confirmed that the deposited layer was nanostructured, with Fe evenly distributed throughout the structure.