Developing low-cost, efficient, and stable trifunctional electrocatalyst for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) is still a significant challenge. Herein, this study reports a zeolitic imidazolate framework (ZIF) derived trifunctional electrocatalyst, composed of Co 5.47 N and Co 7 Fe 3 (CoFeN) that embedded into 1D N-doped carbon nanotubes modified 3D cruciform carbon matrix (NCNTs//CCM). Benefiting from the robust interfacial conjugation of Co 5.47 N/Co 7 Fe 3 and the 1D/3D hierarchical structure with a large surface area, the as-prepared CoFeN-NCNTs//CCM display trifunctional electrocatalytic activity for ORR (half-wave potential of 0.84 V), OER (320 mV at 10 mA cm -2 ), and HER (−151 mV at 10 mA cm -2 ). The assembled Zn-air battery exhibits high power density (145 mW cm -2 ) , enhanced charge-discharge performance (voltage gap of 0.76 V at 10 mA cm -2 ), and long-term cycling stability (over 445 h). The resultant overall water-splitting cell achieves a current density of 10 mA cm -2 at 1.63 V, which can compete with the best reported trifunctional catalysts. What is more, the self-assembled Zn-air batteries are utilized to power the overall water splitting successfully, verifying great potential of the CoFeN-NCNTs//CCM as functional material for sustainable energy storage and conversion system.