The prevalence of iron overload in Tibetans in Tibet is higher than that in Han. DNA methylation (DNAm) is closely related to iron metabolism and iron level. Nevertheless, the epigenetic status of Tibetans with iron overload is unknown, and we therefore aimed to explore whether the phenomenon observed in the Tibetan population is regulated by epigenetics. The results showed that 2.26% of cytosine was methylated in the whole genome, and that the rate of CG cytosine methylation was higher in individuals in the iron overload (TH) group than in those in the iron normal (TL) group. We analyzed differentially methylated genes (DMGs) in whole-genome bisulfite sequencing data from the TH and TL groups of high-altitude Tibetans. Protein-protein interaction and pathway analyses of candidate DMGs related to iron uptake and transport showed that epigenetic changes in 10 candidate genes (ACO1, CYBRD1, FLVCR1, HFE, HMOX2, IREB2, NEDD8, SLC11A2, SLC40A1 and TFRC) are likely to relate to iron overload. This work reveals, for the first time, changes of DNAm in Tibetan people with iron overload, which suggest that DNAm is a mechanism underlying differences in iron content between individuals in the high-altitude Tibetan population. Our findings should contribute to the study of iron metabolism and the overall health status of Tibetans.