Wound healing is the complex and dynamic process of replacing devitalized and missing cellular structures and tissue layers. We have previously shown that melanin, herein, produced by the Antarctic black yeast fungi Pseudonadsoniella brunea (Nadsoniella nigra sp. X-1), has expressed a cyto-protective effect, promoted rapid wound healing of various ethiology and can be offered as a new dermatropic drug. The current study was conducted on a rat model of purulent necrotic wound. In each model, one group was a control, while in the others, wound healing occurred without drug application or with administration of 0,5% carbopol or with both 0,5% carbopol and 0,1% melanin. The pro-oxidant-antioxidant balance in skin gomogenate in dynamics on 3, 6, 9, 14 and day of full epithelization was estimated using the spectrophotometric biochemical method. Moreover, so as to understand the role played by the Tlr2 and Tjp1 in the process of wound healing and scar formation, Tlr2, Tjp1gene expression and genetic mRNA was determined with quantitative RT-PCR. The application of our pharmacological composition stimulated the decrease of Tlr2 and Tjp1 gene expression against the background of suppression of free radical processes (reduction of superoxide anion radical content) with epithelization and without scarring. The results of this study have shown the positive effects of melanin on wound healing. The obtained results indicate the advisability of applying melanin for the treatment of inflammatory processes.