Wireless communication using fully passive metal reflectors is a promising technique for coverage expansion, signal enhancement, rank improvement and blind-zone compensation, thanks to its appealing features including zero energy consumption, ultra low cost, signaling-and maintenance-free, easy deployment and full compatibility with existing and future wireless systems. However, a prevalent understanding for reflection by metal plates is based on Snell's Law, i.e., signal can only be received when the observation angle equals to the incident angle, which is valid only when the electrical dimension of the metal plate is extremely large. In this paper, we rigorously derive a general reflection model that is applicable to metal reflectors of any size, any orientation, and any linear polarization. The derived model is given compactly in terms of the radar cross section (RCS) of the metal plate, as a function of its physical dimensions and orientation vectors, as well as the wave polarization and the wave deflection vector, i.e., the change of direction from the incident wave direction to the observation direction. Furthermore, experimental results based on actual field measurements are provided to validate the accuracy of our developed model and demonstrate the great potential of communications using metal reflectors.