Residual stress, a factor affecting the fatigue and fracture characteristics of rails, is formed during the processes of fabrication and heat treatment, and is also generated by vertical loads on wheels due to the weight of vehicles. Moreover, damage to rails tends to accelerate due to the continuous increase in the number of passes and to the high speed of passing vehicles. Because this can have a direct effect on safety accidents, having a technique to evaluate and analyze the residual stresses in rails accurately is very important. In this study, stresses due to tensile loads applied to new rails and residual stresses remaining in used rails were measured by using magnetic Barkhausen noise method. First, a magnetization frequency and noise band suitable for the rails were selected. Moreover, by applying tensile loads to specimens and comparing the difference in magnetization amplitudes for each load, the stresses applied to the rails by using the magnetic Barkhausen noise method were measured, and the analysis of the results was verified. Based on these results, the difference in the results for the loads asymmetrically applied according to the wheel shape was analyzed by measuring for the head parts of used rails.