Habitat studies that encompass a large portion of a species' geographic distribution can explain characteristics that are either consistent or variable, further informing inference from more localized studies and improving management successes throughout the range. We identified landscape characteristics at Piping Plover nests at 21 sites distributed from Massachusetts to North Carolina and compared habitat selection patterns among the three designated U.S. recovery units (New England, New York-New Jersey, and Southern). Geomorphic setting, substrate type, and vegetation type and density were determined in situ at 928 Piping Plover nests (hereafter, used resource units) and 641 random points (available resource units). Elevation, beach width, Euclidean distance to ocean shoreline, and least-cost path distance to low-energy shorelines with moist substrates (commonly used as foraging habitat) were associated with used and available resource units using remotely sensed spatial data. We evaluated multivariate differences in habitat selection patterns by comparing recovery unit-specific Bayesian networks. We then further explored individual variables that drove disparities among Bayesian networks using resource selection ratios for categorical variables and Welch's unequal variances t-tests for continuous variables. We found that relationships among variables and their connections to habitat selection were similar among recovery units, as seen in commonalities in Bayesian network structures. Furthermore, nesting Piping Plovers consistently selected mixed sand and shell, gravel, or cobble substrates as well as areas with sparse or no vegetation, irrespective of recovery unit. However, we observed significant differences among recovery units in the elevations, distances to ocean, and distances to low-energy shorelines of used resource units. Birds also exhibited increased selectivity for overwash habitats and for areas with access to low-energy shorelines along a latitudinal gradient from north to south. These results have important implications for conservation and management, including assessment of shoreline stabilization and habitat restoration planning as well as forecasting effects of climate change.