Oocyte loss has a significant impact on fertility and somatic health. Yet, we know little about factors that impact this process. We sought to identify genetic variants associated with ovarian reserve (oocyte number as measured by antral follicle count, AFC). Based on recently published genome-wide scans that identified loci associated with age of menopause, we also sought to test our hypothesis that follicle number and menopausal age share underlying genetic associations. We analyzed menopause-related variants for association with follicle number in an independent population of approximately 450 reproductive-aged women of European and African ancestry; these women were assessed for AFC, anthropometric, clinical, and lifestyle factors. One SNP strongly associated with later menopausal age in Caucasian women (+1.07 ± 0.11 years) in previous work was also associated with higher follicle counts in Caucasians (+2.79 ± 1.67 follicles) in our study. This variant is within the Minichromosome Maintenance Complex Component 8 (MCM8) gene, which we found was expressed within oocytes in follicles of the human ovary. In genome-wide scans of AFC, we also identified one marginally genome-wide and several nominally significant SNPs within several other genes associated with follicle number in both ethnic groups. Further, there were overlapping variants associated with multiple ovarian reserve markers (AFC, serum hormone levels, menopausal age). This study provides the first evidence for direct genetic associations underlying both follicle number and menopause and identifies novel candidate genes. Genetic variants associated with ovarian reserve may facilitate discovery of genetic markers to predict reproductive health and lifespan in women.Electronic supplementary materialThe online version of this article (doi:10.1007/s00439-012-1184-0) contains supplementary material, which is available to authorized users.