The current studies were designed to investigate the functional significance of elevated endogenous atrial natriuretic factor (ANF) in acute congestive heart failure (CHF). Integrated cardiorenal and endocrine function were measured in three models of acute low-output congestive heart failure with comparably reduced cardiac output (CO) and mean arterial pressure (MAP). Acute CHF was produced by rapid right ventricular pacing (group I, n = 5) which decreases CO and increases atrial pressures and plasma ANF. In group II, n = 5, thoracic inferior vena caval constriction (TIVCC) was produced to decrease venous return and CO but without increases in atrial pressure or plasma ANF. In group III, n = 5, TIVCC was performed and exogenous ANF infused to achieve plasma concentrations observed in acute CHF. In acute CHF with increases in endogenous ANF, sodium excretion (UNaY), renal blood flow (RBF), plasma renin activity (PRA), and plasma aldosterone (PA) were maintained despite decreases in CO and MAP. In contrast, TIVCC with similar reductions in CO and MAP but without increases in ANF resulted in decreases in UN2V and RBF and increases in PRA and PA. Exogenous administration of ANF in TIVCC to mimic levels in acute CHF prevented sodium retention, renal vasoconstriction, and activation of renin and aldosterone. These studies demonstrate that endogenous ANF serves as an important physiologic volume regulator in acute CHF to maintain sodium excretion and possibly participate in the suppression of activation of the reninangiotensin-aldosterone system despite the stimulus of arterial hypotension.