Competition among individuals is central to our understanding of ecology and population dynamics. However, it could also have major implications for the evolution of resource-dependent life history traits (for example, growth, fecundity) that are important determinants of fitness in natural populations. This is because when competition occurs, the phenotype of each individual will be causally influenced by the phenotypes, and so the genotypes, of competitors. Theory tells us that indirect genetic effects arising from competitive interactions will give rise to the phenomenon of 'evolutionary environmental deterioration', and act as a source of evolutionary constraint on resource-dependent traits under natural selection. However, just how important this constraint is remains an unanswered question. This article seeks to stimulate empirical research in this area, first highlighting some patterns emerging from life history studies that are consistent with a competition-based model of evolutionary constraint, before describing several quantitative modelling strategies that could be usefully applied. A recurrent theme is that rigorous quantification of a competition's impact on life history evolution will require an understanding of the causal pathways and behavioural processes by which genetic (co)variance structures arise. Knowledge of the G-matrix among life history traits is not, in and of itself, sufficient to identify the constraints caused by competition.