Context. Lemaître-Tolman (L-T) toy models with a central observer have been used to study the effect of large scale inhomogeneities on the SN Ia dimming. Claims that a giant void is mandatory to explain away dark energy in this framework are currently dominating. Aims. Our aim is to show that L-T models exist that reproduce a few features of the ΛCDM model, but do not contain the giant cosmic void. Methods. We propose to use two sets of data -the angular diameter distance together with the redshift-space mass-density and the angular diameter distance together with the expansion rate -both defined on the past null cone as functions of the redshift. We assume that these functions are of the same form as in the ΛCDM model. Using the Mustapha-Hellaby-Ellis algorithm, we numerically transform these initial data into the usual two L-T arbitrary functions and solve the evolution equation to calculate the mass distribution in spacetime. Results. For both models, we find that the current density profile does not exhibit a giant void, but rather a giant hump. However, this hump is not directly observable, since it is in a spacelike relation to a present observer.