Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Diabetes is one of the most common metabolic diseases worldwide, leading to complications, mortality, and significant healthcare expenditures, which impose a substantial social and financial burden globally. A diabetic environment can induce metabolic changes, negatively affecting tendon homeostasis, leading to alterations in biomechanical properties and histopathology. Numerous studies have investigated the mechanisms through which diabetes exerts pathological effects on tendons, including increased free radical production, oxidative stress, inflammatory responses, deposition of advanced glycation end products (AGEs), and microvascular changes. These metabolic changes damages tendon structure, biomechanics, and tendon repair processes. The proliferation of tendon stem cells decreases, apoptosis increases, and abnormal differentiation, along with abnormal expression of myofibroblasts, ultimately lead to insufficient tendon repair, fibrosis, and remodeling. Although researches unveiling the effects of diabetes on tendinopathy, fibrosis or contracture, and tendon injury healing are growing, systematic understanding is still lacking. Therefore, this review summarizes the current research status and provides a comprehensive overview, offering theoretical guidance for future in-depth exploration of the impact of diabetes on tendons and the development of treatments for diabetes-related tendon diseases.
Diabetes is one of the most common metabolic diseases worldwide, leading to complications, mortality, and significant healthcare expenditures, which impose a substantial social and financial burden globally. A diabetic environment can induce metabolic changes, negatively affecting tendon homeostasis, leading to alterations in biomechanical properties and histopathology. Numerous studies have investigated the mechanisms through which diabetes exerts pathological effects on tendons, including increased free radical production, oxidative stress, inflammatory responses, deposition of advanced glycation end products (AGEs), and microvascular changes. These metabolic changes damages tendon structure, biomechanics, and tendon repair processes. The proliferation of tendon stem cells decreases, apoptosis increases, and abnormal differentiation, along with abnormal expression of myofibroblasts, ultimately lead to insufficient tendon repair, fibrosis, and remodeling. Although researches unveiling the effects of diabetes on tendinopathy, fibrosis or contracture, and tendon injury healing are growing, systematic understanding is still lacking. Therefore, this review summarizes the current research status and provides a comprehensive overview, offering theoretical guidance for future in-depth exploration of the impact of diabetes on tendons and the development of treatments for diabetes-related tendon diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.