2024
DOI: 10.1007/jhep07(2024)257
|View full text |Cite
|
Sign up to set email alerts
|

Is infrared-collinear safe information all you need for jet classification?

Dimitrios Athanasakos,
Andrew J. Larkoski,
James Mulligan
et al.

Abstract: Machine learning-based jet classifiers are able to achieve impressive tagging performance in a variety of applications in high-energy and nuclear physics. However, it remains unclear in many cases which aspects of jets give rise to this discriminating power, and whether jet observables that are tractable in perturbative QCD such as those obeying infrared-collinear (IRC) safety serve as sufficient inputs. In this article, we introduce a new classifier, Jet Flow Networks (JFNs), in an effort to address the quest… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 79 publications
0
0
0
Order By: Relevance