2023 IEEE Security and Privacy Workshops (SPW) 2023
DOI: 10.1109/spw59333.2023.00007
|View full text |Cite
|
Sign up to set email alerts
|

Is It Overkill? Analyzing Feature-Space Concept Drift in Malware Detectors

Abstract: Concept drift is a major challenge faced by machine learning-based malware detectors when deployed in practice. While existing works have investigated methods to detect concept drift, it is not yet well understood regarding the main causes behind the drift. In this paper, we design experiments to empirically analyze the impact of feature-space drift (new features introduced by new samples) and compare it with data-space drift (data distribution shift over existing features). Surprisingly, we find that data-spa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 20 publications
0
0
0
Order By: Relevance