This paper presents two experiments that examine the influence of multiple levels of knowledge on visual working memory (VWM). Experiment 1 focused on memory for faces. Faces were selected from continua that were constructed by morphing two face photographs in 100 steps; half of the continua morphed a famous face into an unfamiliar one, while the other half used two unfamiliar faces. Participants studied six sequentially presented faces each from a different continuum, and at test they had to locate one of these within its continuum. Experiment 2 examined immediate memory for object sizes. On each trial, six images were shown; these were either all vegetables or all random shapes. Immediately after each list, one item was presented again, in a new random size, and participants reproduced its studied size. Results suggested that two levels of knowledge influenced VWM. First, there was an overall central-tendency bias whereby items were remembered as being closer to the overall average or central tokens (averaged across items and trials) than they actually were. Second, when object knowledge was available for the to-be-remembered items (i.e., famous face or typical size of a vegetable) a further bias was introduced in responses. The results extend the findings of Hemmer and Steyvers (Psychonomic Bulletin & Review, 16, 80-87, 2009a) from episodic memory to VWM and contribute to the growing literature which illustrates the complexity and flexibility of the representations subtending VWM performance (e.g., Bae,