We present horizontal ground motion predictions at a soft site in the Kumamoto alluvial plain for the Mj 5.9 and Mj 6.5 Kumamoto earthquakes of April 2016, in the framework of an international blind prediction exercise (http://www.esg6.jp/). Such predictions were obtained by leveraging all available information which included: i) analysis of earthquake ground motions, ii) processing of ambient vibration data (AMV) and iii) 1D ground response analysis. Spectral analysis of earthquake ground-motion data were used to obtain empirical estimates of the prediction site amplification function, with evidence of an amplification peak at about 1.2 Hz. Horizontal-to-vertical spectral ratio analysis of AMV confirmed this resonance frequency and pointed out also a low frequency resonance around 0.3 Hz at the prediction site. AMV were then processed by cross-correlation, modified spatial autocorrelation and high-resolution beamforming methods to retrieve the 1D shear-wave velocity (Vs) structure at the prediction site by joint inversion of surface-wave dispersion and ellipticity curves. The use of low frequency dispersion curve and ellipticity data allowed to retrieve a reference Vs profile down to few thousand meters depth which was then used to perform 1D equivalent-linear simulations of the M 5.9 event, and both equivalent-linear and nonlinear simulations of the M 6.5 event at the target site. Adopting quantitative goodness-of-fit metrics based on time-frequency representation of the signals, we obtained fair-to-good agreement between 1D predictions and observations for the Mj 6.5 earthquake and a poor agreement for the Mj 5.9 earthquake. In terms of acceleration response spectra, while ground-motion overpredictions were obtained for the Mj 5.9 event, simulated ground motions for the Mj 6.5 earthquake severely underestimate the observations, especially those obtained by the nonlinear approach.