Os métodos de Recuperação da Informação, especialmente considerando-se dados multimídia, evoluíram para a integração de múltiplas fontes de evidência na análise de relevância de itens em uma tarefa de busca. Neste contexto, para atenuar a distância semântica entre as propriedades de baixo nível extraídas do conteúdo dos objetos digitais e os conceitos semânticos de alto nível (objetos, categorias, etc.) e tornar estes sistemas adaptativos às diferentes necessidades dos usuários, modelos interativos que consideram o usuário mais próximo do processo de recuperação têm sido propostos, permitindo a sua interação com o sistema, principalmente por meio da realimentação de relevância implícita ou explícita. Analogamente, a promoção de diversidade surgiu como uma alternativa para lidar com consultas ambíguas ou incompletas. Adicionalmente, muitos trabalhos têm tratado a ideia de minimização do esforço requerido do usuário em fornecer julgamentos de relevância, à medida que mantém-se níveis aceitáveis de eficácia.Esta tese aborda, propõe e analisa experimentalmente métodos de recuperação da informação interativos e multimodais orientados por diversidade. Este trabalho aborda de forma abrangente a literatura acerca da recuperação interativa da informação e discute sobre os avanços recentes, os grandes desafios de pesquisa e oportunidades promissoras de trabalho. Nós propusemos e avaliamos dois métodos de aprimoramento do balanço entre relevância e diversidade, os quais integram múltiplas informações de imagens, tais como: propriedades visuais, metadados textuais, informação geográfica e descritores de credibilidade dos usuários. Por sua vez, como integração de técnicas de recuperação interativa e de promoção de diversidade, visando maximizar a cobertura de múltiplas interpretações/aspectos de busca e acelerar a transferência de informação entre o usuário e o sistema, nós propusemos e avaliamos um método multimodal de aprendizado para ranqueamento utilizando realimentação de relevância sobre resultados diversificados.Nossa análise experimental mostra que o uso conjunto de múltiplas fontes de informação teve impacto positivo nos algoritmos de balanceamento entre relevância e diversidade. Estes resultados sugerem que a integração de filtragem e re-ranqueamento multimodais é eficaz para o aumento da relevância dos resultados e também como mecanismo de potencialização dos métodos de diversificação. Além disso, com uma análise experimental minuciosa, nós investigamos várias questões de pesquisa relacionadas à possibilidade de aumento da diversidade dos resultados e a manutenção ou até mesmo melhoria da sua relevância em sessões interativas. Adicionalmente, nós analisamos como o esforço em diversificar afeta os resultados gerais de uma sessão de busca e como diferentes abordagens de diversificação se comportam para diferentes modalidades de dados. Analisando a eficácia geral e também em cada iteração de realimentação de relevância, nós mostramos que introduzir diversidade nos resultados pode prejudicar resultados iniciais, enquan...