We compared the ability of 1.5 T magnetic resonance imaging (MRI), computed tomography (CT), and computed radiography (CR) to evaluate noncartilaginous structures of the equine metacarpophalangeal joint (MCP), and the association of imaging changes with gross cartilage damage in the context of osteoarthritis. Four CR projections, helical single-slice CT, and MRI (Ti-weighted gradient recalled echo [GRE], T2*-weighted GRE with fast imaging employing steady-state acquisition [FIESTA], T2-weighted fast spin echo with fat saturation, and spoiled gradient recalled echo with fat saturation ISPGR-FS]) were performed on 20 racehorse cadaver forelimbs. Osteophytosis, synovial effusion, subchondral bone lysis and sclerosis, supracondylar lysis, joint fragments, bone marrow lesions, and collateral desmopathy were assessed with each modality. Interexaminer agreement was inferior to intraexaminer agreement and was generally moderate (i.e., 0.4 < kappa < 0.6). Subchondral bone sclerosis scores using CT or MRI were correlated significantly with the reference quantitative CT technique used to assess bone mineral density (P < 0.0001). Scores for subchondral lysis and osteophytosis were higher with MRI or CT vs. CR (P < 0.0001). Although differences between modalities were noted, osteophytosis, subchondral sclerosis, and lysis as well as synovial effusion were all associated with the degree of cartilage damage and should be further evaluated as potential criteria to be included in a whole-organ scoring system. This study highlights the capacity of MRI to evaluate noncartilaginous changes in the osteoarthritic equine MCP joint.