The electrocatalytic reduction of CO in a 30 % (w/w) monoethanolamine (MEA) aqueous solution was undertaken at In, Sn, Bi, Pb, Pd, Ag, Cu and Zn metal electrodes. Upon the dissolution of CO , the non-conducting MEA solution is transformed into a conducting one, as is required for the electrochemical reduction of CO . Both an increase in the electrode surface porosity and the addition of the surfactant cetyltrimethylammonium bromide (CTAB) suppress the competing hydrogen evolution reaction; the latter has a significantly stronger impact. The combination of a porous metal electrode and the addition of 0.1 % (w/w) CTAB results in the reduction of molecular CO to CO and formate ions, and the product distribution is highly dependent on the identity of the metal electrode used. At a potential of -0.8 V versus the reversible hydrogen electrode (RHE) with an indium electrode with a coralline-like structure, the faradaic efficiencies for the generation of CO and [HCOO] ions are 22.8 and 54.5 %, respectively compared to efficiencies of 2.9 and 60.8 % with a porous lead electrode and 38.2 and 2.4 % with a porous silver electrode. Extensive data for the other five electrodes are also provided. The optimal conditions for CO reduction are identified, and mechanistic details for the reaction pathways are proposed in this proof-of-concept electrochemical study in a CO capture medium. The conditions and features needed to achieve industrially and commercially viable CO reduction in an amine-based capture medium are considered.