Misinformation in the media is produced by hard-to-gauge thought mechanisms employed by individuals or collectivities. In this paper, we shed light on what the country-specific factors of falsehood production in the context of COVID-19 Pandemic might be. Collecting our evidence from the largest misinformation dataset used in the COVID-19 misinformation literature with close to 11,000 pieces of falsehood, we explore patterns of misinformation production by employing a variety of methodological tools including algorithms for text similarity, clustering, network distances, and other statistical tools. Covering news produced in a span of more than 14 months, our paper also differentiates itself by its use of carefully controlled hand-labeling of topics of falsehood. Findings suggest that country-level factors do not provide the strongest support for predicting outcomes of falsehood, except for one phenomenon: in countries with serious press freedom problems and low human development, the mostly unknown authors of misinformation tend to focus on similar content. In addition, the intensity of discussion on animals, predictions and symptoms as part of fake news is the biggest differentiator between nations; whereas news on conspiracies, medical equipment and risk factors offer the least explanation to differentiate. Based on those findings, we discuss some distinct public health and communication strategies to dispel misinformation in countries with particular characteristics. We also emphasize that a global action plan against misinformation is needed given the highly globalized nature of the online media environment.
Supplementary Information
The online version contains supplementary material available at 10.1007/s42001-022-00193-5.