During ontogeny, the nasal septum exerts a morphogenetic influence on the surrounding facial skeleton. While the influence of the septum is well established in long snouted animal models, its role in human facial growth is less clear. If the septum is a facial growth center in humans, we would predict that deviated septal growth would be associated with facial skeletal asymmetries. Using computed tomographic (CT) scans of n 5 55 adult subjects, the purpose of this study was to test whether there is a correlation between septal deviation and facial asymmetries using three-dimensional (3D) geometric morphometric techniques. We calculated deviation as a percentage of septal volume relative to the volume of a modeled non-deviated septum. We then recorded skeletal landmarks representing the nasal, palatal, and lateral facial regions. Landmark data were superimposed using Procrustes analysis. First, we examined the correlation between nasal septal deviation and the overall magnitude of asymmetry. Next, we assessed whether there was a relationship between nasal septal deviation and more localized aspects of asymmetry using multivariate regression analysis. Our results indicate that while there was no correlation between septal deviation and the overall magnitude of asymmetry, septal deviation was associated with asymmetry primarily in the nasal floor and the palatal region. Septal deviation was unassociated with asymmetries in the lateral facial skeleton. Though we did not test the causal relationship between nasal septal deviation and facial asymmetry, our results suggest that the nasal septum may have an influence on patterns of adult facial form. Anat Rec, 299:295-306, 2016. V C 2015 Wiley Periodicals, Inc.
Key words: ontogeny; geometric morphometrics; facial skeletonCraniofacial and occlusal asymmetries are commonly observed in populations and can result from a number of causative factors. These include the early loss of primary teeth, loss of permanent teeth, genetic or congenital malformations (e.g., hemifacial microsomia, unilateral clefts, etc.), environmental factors (e.g., habits and trauma), and functional deviations (Bishara et al., 1994;Burstone, 1998