Objective:Sexually transmitted diseases (STD) are the serious public health problems and also impose a financial burden on the economy. Sexually transmitted infections are cured with single or multiple antibiotics. However, in many cases the organism showed persistence even after treatment. In the current study, the set of druggable targets in STD pathogens have been identified by comparative genomics.Materials and Methods:The subtractive genomics scheme exploits the properties of non-homology, essentiality, membrane localization and metabolic pathway uniqueness in identifying the drug targets. To achieve the effective use of data and to understand properties of drug target under single canopy, an integrated knowledge database of drug targets in STD bacteria was created. Data for each drug targets include biochemical pathway, function, cellular localization, essentiality score and structural details.Results:The proteome of STD pathogens yielded 44 membrane associated proteins possessing unique metabolic pathways when subjected to the algorithm. The database can be accessed at http://biomedresearchasia.org/index.html.Conclusion:Diverse data merged in the common framework of this database is expected to be valuable not only for basic studies in clinical bioinformatics, but also for basic studies in immunological, biotechnological and clinical fields.