In the first paper to present formal theory explaining that senescence is a consequence of natural selection, W. D. Hamilton concluded that human postmenopausal longevity results from the contributions of ancestral grandmothers to the reproduction of their relatives. A grandmother hypothesis, subsequently elaborated with additional lines of evidence, helps explain both exceptional longevity and additional features of life history that distinguish humans from the other great apes. However, some of the variation observed in aging rates seems inconsistent with the tradeoffs between current and future reproduction identified by theory. In humans and chimpanzees, our nearest living relatives, individuals who bear offspring at faster rates do not cease bearing sooner. They continue to be fertile longer instead. Furthermore, within both species, groups with lower overall mortality rates have faster rates of increase in death risk with advancing age. These apparent contradictions to the expected life history tradeoffs likely result from heterogeneity in frailty among individuals. Whereas robust and frail alike must allocate investments between current and future reproduction, the more robust can afford more of both. This heterogeneity, combined with evolutionary tradeoffs and the key role of ancestral grandmothers they identify, helps explain aspects of human aging that increasingly concern us all.evolution of senescence | heterogeneity of frailty | human life history | menopause | human aging L ong postmenopausal survival is a characteristic of our species.