To study what kind of role uric acid play on the relationship between oxidative Stress and inflammation in peripheral and cerebral system of oxonate-induced hyperuricemic rats. Twenty-six eight male Wistar rats were divided into two groups randomly. Potassium oxonate was used to establish hyperuricemic model for four weeks. In 2 nd and 4 th week, uric acid (UA) level, total superoxide dismutase (T-SOD), Gu,Zn-SOD activity and interleukin-1beta (IL-1β) concentration in serum were determined respectively. In 4 th week, one hour after last PO treatment, five rats of every group were given Evans Blue to test blood-brain barrier (BBB) permeability. Other brains were obtained to analysis T-SOD, Gu,Zn-SOD activity and IL-1β concentration in cerebral system. Meanwhile, brain and kidney were stained with hematoxylin and eosin (H&E) to observe pathological change. In 2 nd week, both of T-SOD and Gu,Zn-SOD activity in serum increased obviously (P<0.05) in hyperuricemia rats. However, IL-1β content didn't change remarkably. In the 4 th week, T-SOD activity in model group had become similar with control group, and at the same time IL-1β content in serum increased significantly (P<0.05). Pathological section showed the structural and functional unit of the kidney had been damaged. On the contrary, both of T-SOD and Gu,Zn-SOD activity in brain increased obviously (P<0.05), but IL-1β concentration was no significant difference between two groups. In addition, the results of Evans Blue and H&E suggested the integrity of BBB and structure of brain were not changed after PO treatment. The permeability of BBB and form of UA would be potential factors to decide what kind role UA play on keeping balance between antioxidative stress and induction of inflammatory response.