Cities are systems with a large number of constituents and agents interacting with each other and can be considered as emblematic of complex systems. Modeling these systems is a real challenge and triggered the interest of many disciplines such as quantitative geography, spatial economics, geomatics and urbanism, and more recently physics. (Statistical) Physics plays a major role by bringing tools and concepts able to bridge theory and empirical results, and we will illustrate this on some fundamental aspects of cities: the growth of their surface area and their population, their spatial organization, and the spatial distribution of activities. We will present state-of-the-art results and models but also open problems for which we still have a partial understanding and where physics approaches could be particularly helpful. We will end this short review with a discussion about the possibility of constructing a science of cities.