A new four-port non-isolated SEPIC converter intended for hybrid renewable energy systems is presented in this study. The suggested converter minimizes space and expense by integrating two inputs and two outputs in a single-stage structure with fewer components. The converter retains important characteristics including continuous input current, buck/boost capability, non-inverting output, and enhanced power factor because it is based on the fundamental SEPIC topology. It effectively combines an energy storage system (ESS) with a variety of energy sources that have different voltage and current characteristics. The converter can be configured to operate in unidirectional or bidirectional topologies depending on whether storage elements are included. Performance is examined in two operating modes, with an emphasis on the ESS’s charging and discharging processes. System equations are produced by steady-state analysis, and the design of a closed-loop controller for accurate input power and output voltage regulation is informed by dynamic analysis performed with the state-space approach. Through real-time hardware implementation and MATLAB/Simulink simulations, the efficacy of the suggested design is verified, demonstrating the open-loop unidirectional topology’s theoretical and practical validity.