Background
General anesthesia produces multiple endpoints including immobility, hypnosis, sedation and amnesia. Tonic inhibition via γ–aminobutyric acid type A receptors (GABAA-Rs) may play a role in mediating behavioral endpoints that are suppressed by low concentrations of anesthetics (e.g., hypnosis and amnesia). GABAA-Rs containing the α4 subunit are highly concentrated in the hippocampus and thalamus, and when combined with δ subunits they mediate tonic inhibition, which is sensitive to low concentrations of isoflurane.
Methods
The present study used a GABAA α4 receptor knockout mouse line to evaluate the contribution of α4-containing GABAAreceptors to the effects of immobility, hypnosis and amnesia produced by isoflurane. Knockout mice and their wild-type counterparts were assessed on three behavioral tests: conditional fear (to assess amnesia), loss of righting reflex (to assess hypnosis), and MAC, the minimum alveolar concentration of inhaled anesthetic necessary to produce immobility in response to noxious stimulation in 50% of subjects (to assess immobility).
Results
Genetic inactivation of the α4 subunit reduced the amnestic effect of isoflurane, minimally affected loss of righting reflex, and had no effect on immobility.
Conclusions
These results lend support to the hypothesis that different sites of action mediate different anesthetic endpoints and suggest that α4-containing GABAA-R are important mediators of the amnestic effect of isoflurane on hippocampal-dependent declarative memory.