Bree AJ, Puente EC, Daphna-Iken D, Fisher SJ. Diabetes increases brain damage caused by severe hypoglycemia. Am J Physiol Endocrinol Metab 297: E194 -E201, 2009. First published May 12, 2009 doi:10.1152/ajpendo.91041.2008.-Insulin-induced severe hypoglycemia causes brain damage. The hypothesis to be tested was that diabetes portends to more extensive brain tissue damage following an episode of severe hypoglycemia. Nine-week-old male streptozotocin-diabetic (DIAB; n ϭ 10) or vehicle-injected control (CONT; n ϭ 7) SpragueDawley rats were subjected to hyperinsulinemic (0.2 U⅐kg Ϫ1 ⅐min Ϫ1 ) severe hypoglycemic (10 -15 mg/dl) clamps while awake and unrestrained. Groups were precisely matched for depth and duration (1 h) of severe hypoglycemia (CONT 11 Ϯ 0.5 and DIAB 12 Ϯ 0.2 mg/dl, P ϭ not significant). During severe hypoglycemia, an equal number of episodes of seizure-like activity were noted in both groups. One week later, histological analysis demonstrated extensive neuronal damage in regions of the hippocampus, especially in the dentate gyrus and CA1 regions and less so in the CA3 region (P Ͻ 0.05), although total hippocampal damage was not different between groups. However, in the cortex, DIAB rats had significantly (2.3-fold) more dead neurons than CONT rats (P Ͻ 0.05). There was a strong correlation between neuronal damage and the occurrence of seizure-like activity (r 2 Ͼ 0.9). Separate studies conducted in groups of diabetic (n ϭ 5) and nondiabetic (n ϭ 5) rats not exposed to severe hypoglycemia showed no brain damage. In summary, under the conditions studied, severe hypoglycemia causes brain damage in the cortex and regions within the hippocampus, and the extent of damage is closely correlated to the presence of seizure-like activity in nonanesthetized rats. It is concluded that, in response to insulin-induced severe hypoglycemia, diabetes uniquely increases the vulnerability of specific brain areas to neuronal damage.Fluoro-Jade; insulin; seizure; streptozotocin HYPOGLYCEMIA IS THE MOST PREVALENT clinical complication in the daily management of insulin-treated people with diabetes, and hypoglycemia continues to be the limiting factor in the glycemic management of diabetes (15). Since severe hypoglycemia affects 40% of insulin-treated people with diabetes (49), concern regarding the hazardous potential for severe hypoglycemia to cause "brain damage" continues to be a very real barrier in striving to fully realize the benefits associated with intensive glycemic control (14). Animal models have unambiguously demonstrated that acute episodes of severe hypoglycemia [blood glucose (BG) Ͻ18 mg/dl] reproducibly induce neuronal damage, especially in the vulnerable neurons in the cortex and hippocampus (2,9,33,44,45,54). Deficits in learning and memory have been shown to be a direct consequence of this severe hypoglycemia-induced hippocampal neuronal damage (2,44,45). However, clincial studies in patients with diabetes have yielded variable results, since episodes of severe hypoglycemia have been shown to alter br...