SummaryProtein isoforms (PIs) play pivotal roles in regulating plant growth and development that confer adaptability to diverse environmental conditions. PIs are widely present in plants and generated through alternative splicing (AS), alternative polyadenylation (APA), alternative initiation (AI), and ribosomal frameshifting (RF) events. The widespread presence of PIs not only significantly increases the complexity of genomic information but also greatly enriches regulatory networks and enhances their flexibility. PIs may also play important roles in phenotypic diversity, ecological niche differentiation, and speciation, thereby increasing the dimensions of research in molecular ecology. However, PIs pose new challenges for the quantitative analysis, annotation, and identification of genetic regulatory mechanisms. Thus, focus on PIs make genomic and epigenomic studies both more powerful and more challenging. This review summarizes the origins, functions, regulatory patterns of isoforms, and the challenges they present for future research in molecular ecology and molecular biology.