Adverse effects that result from dexamethasone (DEX) use are common and serious in patients with asthma. Therefore, alternative anti-inflammatory treatments are being investigated. Isoimperatorin (ISO), an active natural furocoumarin, possesses multiple pharmacological properties, including an anti-inflammation effect. In this study, investigations were conducted on the effect of ISO on mast cell (MC) activation in vitro and whether ISO could reduce the effective dose of DEX in a mast cell-dependent murine model of asthma in vivo. Calcium imaging was used to assess intracellular Ca 2+ mobilization. Enzyme-linked immunosorbent assay was used to measure the chemokines release. Western blot analysis was conducted to investigate the underlying pathway. Airway inflammation and hyperresponsiveness (AHR) were examined in an asthma model. ISO inhibited Ca 2+ flux and MC degranulation via Lyn/PLCγ1/PKC, ERK, and P38 MAPK pathways. In the asthma model, ISO, in combination with DEX, showed an additive inhibitory effect on AHR, inflammation, and the number of activated MCs in the lungs and decreased the levels of interleukin (IL)-4, IL-5, IL-6, IL-13, tumor necrosis factor (TNF)-a, and CC motif chemokine ligand (CCL)-2 in bronchoalveolar lavage fluid. A combination of DEX and ISO may be appropriate if a decrease in the steroid dose is desired owing to dose-dependent adverse effects.