Initial design cementless metal-backed patellar implants failed due to multiple reasons including implant design, use of first-generation polyethylene, and surgical technique. This study evaluates clinical outcomes and survivorship of total knee arthroplasty (TKA) using a current generation highly porous metal-backed patellar component. One-hundred twenty-five consecutive primary cementless TKAs with a compression molded highly porous metal-backed patella were reviewed. One-hundred three TKAs (82.4%) with 5-year clinical and radiographic follow-up were available for review. These were matched with 103 consecutive TKAs using a cemented patella of the same implant design. The cementless cohort had a mean age of 65.5 years, body mass index (BMI) of 33.0, and follow-up of 64.4 months. Indications for cementless TKA were based on multiple factors including age, BMI, and bone quality. There were no revisions for loosening or mechanical failure of the cementless patella compared with two cemented patellae revised for aseptic loosening. Eight patients required revisions in the cementless cohort: three for prosthetic joint infection (PJI), two for instability, one periprosthetic femur fracture, one for patella instability, and one for extensor mechanism rupture. Five patients required revisions in the cemented cohort: two for aseptic patellar loosening, one for aseptic femoral loosening, one for PJI, and one for instability. All-cause survivorship at 5 years was 92.2 and 95.1% for the cementless metal-backed implant and cemented implant cohorts, respectively. Use of a compression molded highly porous metal-backed patella component demonstrated excellent clinical and radiographic results at 5-year follow-up. Longer follow-up is required to evaluate the ability of highly porous cementless patella implants to provide durable long-term fixation.