Pulmonary nodules have been found as the main pathological change in the lung. Signs of pulmonary nodule lay the major basis for the recognition of the benign and malignant of pulmonary nodules. The spiculation of pulmonary nodules is one of the main signs. Pulmonary nodules are small in volume, so they are difficult to extract accurately. Moreover, the number of spiculation samples is limited, so it is difficult to build a stable network structure. Thus, a novel pulmonary nodule spiculation recognition algorithm is proposed. MCA (morphological component analysis) model is built to segment pulmonary nodules in accordance with the composition of pulmonary CT images. Subsequently, the maximum density projection mechanism is introduced to characterize the boundary features of pulmonary nodules to the maximum extent. Inspired by time series dynamic programming, this paper proposes DTW (dynamic time warping) distance to measure data similarity. Lastly, a semisupervised generative adversarial network is built to solve the problem of insufficient positive samples, and it is capable of recognizing pulmonary nodule spiculation. As revealed by the experimental result, the proposed algorithm exhibited strong robustness.