A conditional developmental mutant of Mucor racemosus which is capable of oxidative energy metabolism is described. Unlike the wild-type strain the mutant was highly fermentative and exhibited the yeast morphology when grown aerobically in glucose-containing media. The high fermentative activity and yeast morphology under these conditions correlated well with maximal expression of glycolytic enzymes and with expression of some polypeptides' characteristic of anaerobic growth. Aerobic growth of the mutant on amino acids as the sole carbon source resulted in growth in the' mycelial morphology. The mnutant was fully capable'of oxidative metabolism as judged by its ability to grow on amino acids, respiratory capacity, and complement of tricarboxylic acid cycle enzymes. The results support the hypothesis that oxygen controls both the expression of glycolytic enzymes and the expression of proteins involved in morphogenesis. Moreover, they suggest that there are common regulatory elements in the control of these two classes of gene products. Abnormally high levels of aconitase and isocitrate dehydrogenase in the mutant are consistent with the proposal that pool sizes of citrate may act as a regulator of genes responsive to environmental oxygen concentration.