Various mechanisms to fend off microbial invaders have been devised by a11 living organisms, including microorganisms themselves. The most sophisticated of these mechanisms relies on the synthesis of immunoglobulins directed against specific microbial targets. However, immunoglobulin-based immunity operates only in a relatively minor subset of living species, namely the higher vertebrates. A much more ancient and widespread defense strategy involves the production of small peptides that exert antimicrobial properties. As products of single genes, antimicrobial peptides can be synthesized in a swift and flexible way, and because of their small size they can be produced by the host with a minimal input of energy and biomass. Wellknown examples of antimicrobial peptides are the cecropins that accumulate in the hemolymph of many invertebrates in response to injury or infection (reviewed by Boman and Hultmark, 1987) and the magainins that are secreted by glands in the skin of amphibians (reviewed by Bevins and Zasloff, 1990). Cecropins and magainins are small (2040 residues) basic peptides displaying an amphipathic a-helical structure that can integrate in microbial membranes to form ion channels (Duclohier, 1994).Another class of antimicrobial peptides is formed by the Cys-rich peptides, which in contrast to cecropins and magainins, have a complex cystine-stabilized three-dimensional folding pattern often involving antiparallel P-sheets. Defensins are one class among the numerous types of Cys-rich antimicrobial peptides, which differ in length, number of cystine, bonds, or folding pattern (reviewed by Boman, 1995). Insect defensins (3443 residues, three disulfide bridges) are, like cecropins, produced in a pathogeninducible manner by the insect fat body and secreted in the hemolymph (reviewed by Hoffmann and Hétru, 1992).