The thermal degradation of D-glucose, maltose, and maltotriose in aqueous solution was investigated under caramelization (no glycine) and Maillard (with glycine) conditions. Degradation of the sugar and alpha-dicarbonyls product was monitored. Under both caramelization and Maillard reaction conditions, 3-deoxypentosulose was the predominating alpha-dicarbonyl compound formed from maltose and maltotriose. In the absence of an amino compound, however, 3-deoxypentosulose is formed in much lower concentration. It was concluded that 3-deoxypentosulose is formed by a pathway specific for oligo- and polysaccharides since this alpha-dicarbonyl is formed from the alpha-1-->4 glucans such as maltose and maltotriose but not from glucose. For its formation, a retro Claisen reaction of an enolization product of 1-amino-1,4-dideoxyhexosulose is proposed as the route to its formation. 1-Amino-1,4-dideoxyhexosulose could be formed by vinylogous alpha-elimination from the 2,3-enediol structure after Amadori rearrangement, favored by planar alignment of the bonds between C1 and C4. Subsequent rearrangement by keto-enoltautomerization leads to a 1-imino-3-keto structure. In this structure, attack of a hydroxyl anion, provided by water at neutral pH, could cause a splitting off of the C1. This reaction gives rise to formic acid or formamide and a pentose derivative, which reacts further to give 3-deoxypentosulose.