Venomous snakebite is a major human health issue in many countries and has been categorized as a neglected tropical disease by the World Health Organization. Venomous snakes have evolved to produce venom, which is a complex mixture of toxic proteins and peptides, both enzymatic and nonenzymatic in nature. In this current era of high-throughput technologies, venomics projects, which include genome, transcriptome, and proteome analyses of various venomous species, have been conducted to characterize divergent venom phenotypes and the evolution of venom-related genes. Additionally, venomics can also inform about mechanisms of toxin production, storage, and delivery. Venomics can guide antivenom and therapeutic strategies against envenomations and identify new toxin-derived drugs/tools. One potentially promising drug development direction is the use of endogenous inhibitors present in snake venom glands and serum that could be useful for snakebite therapeutics. These inhibitors suppress the activity of venom proteases, enzymatic proteins responsible for the irreversible damage from snakebite. This book chapter will focus on insights from venomous snake adaptations, such as the evolution of venom proteases to generate diverse activities and snake natural resistance to inhibit activity, and how this information can inform and have applications in the treatment of venomous snakebite.