Photosystems I and II are the central components of the solar energy conversion machinery in oxygenic photosynthesis. They are large functional units embedded in the photosynthetic membranes, where they harvest light and use its energy to drive electrons from water to NADPH. Their composition and organization change in response to different environmental conditions, making these complexes dynamic units. Some of the interactions between subunits survive purification, resulting in the well-defined structures that were recently resolved by cryo-electron microscopy. Other interactions instead are weak, preventing the possibility of isolating and thus studying these complexes in vitro. This review focuses on these supercomplexes of vascular plants, which at the moment cannot be 'seen' but that represent functional units in vivo. Dedication: This review is dedicated to the memory of Prof. Jan Anderson, a pioneer in this field, a great scientist, a great woman, an example for me.