Bisretinoid adducts accumulate as lipofuscin in retinal pigment epithelial (RPE) cells of the eye and are implicated in the pathology of inherited and age-related macular degeneration. Characterization of the bisretinoids A2E and the all-trans-retinal dimer series has shown that these pigments form from reactions in photoreceptor cell outer segments that involve alltrans-retinal, the product of photoisomerization of the visual chromophore 11-cis-retinal. Here we have identified two related but previously unknown RPE lipofuscin compounds. By high performance liquid chromatography-electrospray ionization-tandem mass spectrometry, we determined that the first of these compounds is a phosphatidyl-dihydropyridine bisretinoid; to indicate this structure and its formation from two vitamin A-aldehyde (A2), we will refer to it as A2-dihydropyridinephosphatidylethanolamine (A2-DHP-PE). The second pigment, A2-dihydropyridine-ethanolamine, forms from phosphate hydrolysis of A2-DHP-PE. The structure of A2-DHP-PE was corroborated by Fourier transform infrared spectroscopy, and density functional theory confirmed the presence of a dihydropyridine ring. This lipofuscin pigment is a fluorescent compound with absorbance maxima at ϳ490 and 330 nm, and it was identified in human, mouse, and bovine eyes. We found that A2-DHP-PE forms in reaction mixtures of all-trans-retinal and phosphatidylethanolamine, and in mouse eyecups we observed an age-related accumulation. As compared with wild-type mice, A2-DHP-PE is more abundant in mice with a null mutation in Abca4 (ATP-binding cassette transporter 4), the gene causative for recessive Stargardt macular degeneration. Efforts to clarify the composition of RPE lipofuscin are important because these compounds are targets of gene-based and drug therapies that aim to alleviate ABCA4-related retinal disease.Throughout the life of an individual, retinal pigment epithelial (RPE) 2 cells of the eye accumulate bisretinoid adducts that comprise the lipofuscin of these cells (1-3). The compounds form as a byproduct of light-mediated isomerization of the visual chromophore 11-cis-retinal. Accordingly, conditions that reduce the production of all-trans-retinal (atRAL) from 11-cisretinal photoisomerization, such as reduced serum vitamin A (4 -6), variants, or mutations in the visual cycle protein RPE65 (7-9) and inhibitors of RPE65 and 11-cis retinol dehydrogenase (10 -13), substantially reduce the formation of this material.Up to the present time, at least 17 constituents of RPE lipofuscin have been identified chromatographically and characterized structurally; added to these are biosynthetic intermediates such as N-retinylidene-phosphatidylethanolamine (NRPE), A2PE and dihydropyridinium-A2PE (see Fig. 1, A and B) (14 -19). The first RPE lipofuscin constituent to be described was A2E (see Fig. 1A, inset). The pyridinium bisretinoid (14 -16, 20, 21) structure of A2E (C 42 H 58 NO; molecular weight, 592) was confirmed by extensive nuclear magnetic resonance studies (14) and by total synthesis (22). A2E...