In Salmonella typhimurium and Escherichia coli, the hemA gene encodes the enzyme glutamyl-tRNA reductase, which catalyzes the first committed step in the heme biosynthetic pathway. It has recently been reported that a lac operon fusion to the hemA promoter of E. coli is induced 20-fold after starvation for heme. Induction was dependent on the transcriptional regulator ArcA, with a second transcriptional regulator, FNR, playing a negative role specifically under anaerobic conditions (S. Darie and R. P. Gunsalus, J. Bacteriol. 176:5270-5276, 1994). We have investigated the generality of this effect by examining the response to heme starvation of a number of lac operon fusions to the hemA promoters of both E. coli and S. typhimurium. We confirmed that such fusions are induced during starvation of a hemA auxotroph, but the level of induction observed was maximally sixfold and for S. typhimurium fusions it was only two-to fourfold. Sequences required for high-level expression of hemA lie within 129 bp upstream of the major (P1) promoter transcriptional start site. Mutants defective in the P1 promoter had greatly reduced hemA-lac expression both in the presence and in the absence of ALA. Mutations in arcA had no effect on hemA-lac expression in E. coli during normal growth, although the increase in expression during starvation for ALA was half that seen in an arcA ؉ strain. Overexpression of the arcA gene had no effect on hemA-lac expression. Primer extension analysis showed that RNA 5 ends mapping to the hemA P1 and P2 promoters were not expressed at significantly higher levels in induced cultures. These results differ from those previously reported.