Saline soils exert persistent salt stress on plants that inhibits their ability to carry out photosynthesis and leads to photosynthetic carbon (C) scarcity in plant roots and the rhizosphere. However, it remains unclear how a rhizosphere environment is shaped by photosynthetic C partitioning under saline conditions. Given that sucrose is the primary form of photosynthetic C transport, we, respectively, created sucrose transport distorted (STD) and enhanced (STE) rice lines through targeted mutation and overexpression of the sucrose transporter gene OsSUT5. This approach allowed us to investigate different scenarios of photosynthate partitioning to the rhizosphere. Compared to the non-saline soil, we found a significant decrease in soil dissolved organic carbon (DOC) in the rhizosphere, associated with a reduction in bacterial diversity when rice plants were grown under moderate saline conditions. These phenomena were sharpened with STD plants but were largely alleviated in the rhizosphere of STE plants, in which the rhizosphere DOC, and the diversity and abundances of dominant bacterial phyla were measured at comparable levels to the wildtype plants under non-saline conditions. The complexity of bacteria showed a greater level in the rhizosphere of STE plants grown under saline conditions. Several salt-tolerant genera, such as Halobacteroidaceae and Zixibacteria, were found to colonize the rhizosphere of STE plants that could contribute to improved rice growth under persistent saline stresses, due to an increase in C deposition.