Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Context Abandoned mines provide an ideal opportunity to study the succession of microbial communities, which is crucial for the development and stability of the soil. Aims We examined the diversity and temporal succession of the microbial community in an abandoned coal mine. Methods We investigated soil geochemical parameters and microbial succession using high-throughput 16S rRNA gene amplicon sequences over a 4-year period in a derelict opencast circum-neutral coal mine in Tasra colliery, Jharkhand, India. Results Soil pH (4.46–6.13), organic carbon (0.86–4.53%), available nitrogen (0.001–0.003%) and total cultivable heterotrophic microbial load increased, and concentrations of chloride (24 865–15 067 ppm), sulfate (26 417–417 ppm) and heavy metals reduced over the period of 4 years. The 16S rRNA gene sequences identified Proteobacteria as the dominant phylum across samples except for the fourth year, where Actinobacteria was predominant. Chlorobi, WPS-2 and Spirochaetes were exclusively identified in the first year. Twelve phyla present in the first year were completely absent by the end. In the fourth year, an abundance of nitrogen-fixing members such as Burkholderiales, Rhizobiales, Roseiflexales and Actinomycetales was noted and semi-quantitative PCR suggested that nitrogenases were predominately vanadium dependent (relative to molybdenum). Gradual shifts from purportedly chemolithotrophic to heterotrophic metabolic strategies were also observed. Conclusion This work establishes that soil improvement in abandoned coal mines involves the dynamic interplay of physicochemical parameters and shifts in microbial communities and dominant metabolic guilds. This knowledge can be used to plan and monitor remediation measures in such sites.
Context Abandoned mines provide an ideal opportunity to study the succession of microbial communities, which is crucial for the development and stability of the soil. Aims We examined the diversity and temporal succession of the microbial community in an abandoned coal mine. Methods We investigated soil geochemical parameters and microbial succession using high-throughput 16S rRNA gene amplicon sequences over a 4-year period in a derelict opencast circum-neutral coal mine in Tasra colliery, Jharkhand, India. Results Soil pH (4.46–6.13), organic carbon (0.86–4.53%), available nitrogen (0.001–0.003%) and total cultivable heterotrophic microbial load increased, and concentrations of chloride (24 865–15 067 ppm), sulfate (26 417–417 ppm) and heavy metals reduced over the period of 4 years. The 16S rRNA gene sequences identified Proteobacteria as the dominant phylum across samples except for the fourth year, where Actinobacteria was predominant. Chlorobi, WPS-2 and Spirochaetes were exclusively identified in the first year. Twelve phyla present in the first year were completely absent by the end. In the fourth year, an abundance of nitrogen-fixing members such as Burkholderiales, Rhizobiales, Roseiflexales and Actinomycetales was noted and semi-quantitative PCR suggested that nitrogenases were predominately vanadium dependent (relative to molybdenum). Gradual shifts from purportedly chemolithotrophic to heterotrophic metabolic strategies were also observed. Conclusion This work establishes that soil improvement in abandoned coal mines involves the dynamic interplay of physicochemical parameters and shifts in microbial communities and dominant metabolic guilds. This knowledge can be used to plan and monitor remediation measures in such sites.
Gujarat provides a rich source of high-grade lignite coal accomplishing the fuel needs of the national economy, under Gujarat Mineral Development Corporation Ltd. However, the lignite mines in Bharuch district of Gujarat state are reservoirs to a huge microbial diversity, which might be important for various industrial applications. The present study focuses on the isolation and characterization of microorganisms found in the lignite coal from the Bharuch mines of Gujarat. The samples were resuspended in different diluents – water and Phosphate Buffered Saline and cultured on Nutrient Agar. Morphological characterization was done for the isolated strains followed by biochemical characterization for microbial identification. Based on the observations, two species were identified probably as Streptococcus sp. and Staphylococcus sp. on biochemical characterizations. The microbial isolates were further screened for their ability to produce lipase enzyme by qualitative screening tests for lipase production by Phenol Red Olive Oil Agar. All the isolates were tested positive for Lipase enzyme production were subjected to Tween-80 Hydrolysis tests for confirmation. This marks their potential to be studied for development of bioremediation strategies for crude oil contamination in soil or water bodies. This was followed by reviewing the use of such isolates for other applications including antioxidant studies, development of biodegradation strategies, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.