Elms (Ulmus spp.) were once dominant trees in mixed broadleaf forests of many European territories, mainly distributed near rivers and streams or on floodplains. Since ancient times they have provided important services to humans, and several selected genotypes have been massively propagated and planted. Today elm populations are severely degraded due to the negative impact of human-induced changes in riparian ecosystems and the emergence of the highly aggressive Dutch elm disease pathogens. Despite the death of most large elm specimens, there is no evidence of genetic diversity loss in elm populations, probably due to their ability to resprout after disease. The recovery of elm populations from the remaining diversity should build from genomic tools that facilitate achievement of resistant elm clones. Research works to date have discerned the genetic diversity of elms and are well on the way to deciphering the genetic clues of elm resistance and pathogen virulence, key findings for addressing recovery of elm populations. Several tolerant clones suitable for use in urban and landscape planting have been obtained through traditional species hybridization with Asian elms, and various native clones have been selected and used in pilot forest restoration projects. Successful reintroduction of elms should also rely on a deeper understanding of elm ecology, in particular their resilience to abiotic and biotic disturbances. However, all these efforts would be in vain without the final acceptance of elm reintroduction by the social actors involved, making it necessary to evaluate and publicize the ecosystem services elms can provide for today's society.