Activities such as childbirth and breastfeeding can cause severe oxidative stress and inflammatory damage to the mother during early lactation, and can affect animal milk production, and the growth and development of offspring. Trehalose alleviates damage to the body by endowing it with stress resistance. In this study, we used trehalose combined with Lactobacillus plantarum, Bifidobacterium longum, Bacillus subtilis, and Saccharomyces cerevisiae to explore whether dietary intervention can alleviate oxidative stress and inflammatory damage in early lactation and to evaluate the growth ability, acid production ability, antioxidant ability, non-specific adhesion ability, antibacterial ability, and other parameters to determine the optimal combinations and proportions. The results showed that the synbiotics composed of 2.5% trehalose and 1 × 107 cfu/g of Bifidobacterium longum could regulate the gut microbiota, and promote mammary gland development in dams by reducing progesterone (PROG) content in the blood, increasing prolactin (PRL) and insulin-like growth factor-1 (IGF-1) content, enhancing their antioxidant and immune abilities, and effectively increasing the weight and lactation of early lactating dams. In addition, it can also affect the growth of offspring and the development of the intestinal barrier. These results indicate that trehalose synbiotics have great potential in alleviating oxidative stress and inflammatory damage in early lactation.