The succession of bacterial and fungal populations was assessed in an activated sludge (AS) diffusion bioreactor treating a synthetic malodorous emission containing HS, toluene, butanone and alpha-pinene. Microbial community characteristics (bacterial and fungal diversity, richness, evenness and composition) and bioreactor function relationships were evaluated at different empty bed residence times (EBRTs) and after process fluctuations and operational failures (robustness test). For HS, butanone and toluene, the bioreactor showed a stable and efficient abatement performance regardless of the EBRT and fluctuations applied, while low alpha-pinene removals were observed. While no clear positive or negative relationship between community characteristics and bioreactor functions was observed, ecological parameters such as evenness and community dynamics seemed to be of importance for maintaining reactor stability. The optimal degree of evenness of the inoculum likely contributed to the high robustness of the system towards the fluctuations imposed. Actinobacteria, Proteobacteria and Fungi (Hypocreales, Chaeatothyriales) were the most abundant groups retrieved from the AS system with a putative key role in the degradation of butanone and toluene. Typical HS and alpha-pinene degraders were not retrieved from the system. The inoculation of P. fluorescens, a known alpha-pinene degrader, to the system did not result in the enhancement of the degradation of this compound. This strain was likely outcompeted by the microorganisms already adapted to the AS environment.