Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
IntroductionMuscovy duck parvovirus (MDPV), Goose parvovirus (GPV), Duck circovirus, (DuCV) and Duck adenovirus 3 (DAdV-3) are important pathogens that cause high morbidity and mortality in ducks, causing huge economic loss for the duck industry.MethodsThe present study, a quadruplex one-step real time quantitative PCR method for the detection of MDPV, GPV, DuCV, and DAdV-3 was developed. ResultsThe results showed that assay had no cross-reactivity with other poultry pathogens [Duck plague virus (DPV), Duck tembusu virus (DTMUV), H6 avian influenza virus (H6 AIV), New duck reovirus (NDRV), Newcastle disease virus (NDV), H4 avian influenza virus (H4 AIV), Escherichia coli (E. coli), Muscovy duck reovirus (MDRV), Egg drop syndrome virus (EDSV), Pasteurella multocida (P. multocida)]. The sensitivity result showed that the limits of detection for MDPV, GPV, DuCV, and DAdV-3 were 10, 10, 1 and 10 copies/µl, respectively; The coefficients of variation intra- and inter-method was 1-2%; The range of linear (109 to 103 copies/µL) demonstrated the R2 values for MDPV, GPV, DuCV, and DAdV-3 as 0.9975, 0.998, 0.9964, and 0.996, respectively. The quadruplex real time quantitative PCR method efficiency was 90.30%, 101.10%, 90.72%, and 90.57% for MDPV, GPV, DuCV, and DAdV-3, respectively. 396 clinical specimens collected in some duck sausages from June 2022 to July 2023 were simultaneously detected using the established quadruplex real time quantitative PCR method and the reported assays. The detection rates for MDPV, GPV, DuCV, and DAdV-3 were 8.33% (33/396), 17.93% (71/396), 33.58% (133/396), and 29.04% (115/396), respectively. The agreement between these assays was greater than 99.56%.DiscussionThe developed quadruplex real-time quantitative PCR assay can accurately detect these four viruses infecting ducks, providing a rapid, sensitive, specific and accurate technique for clinical testing.
IntroductionMuscovy duck parvovirus (MDPV), Goose parvovirus (GPV), Duck circovirus, (DuCV) and Duck adenovirus 3 (DAdV-3) are important pathogens that cause high morbidity and mortality in ducks, causing huge economic loss for the duck industry.MethodsThe present study, a quadruplex one-step real time quantitative PCR method for the detection of MDPV, GPV, DuCV, and DAdV-3 was developed. ResultsThe results showed that assay had no cross-reactivity with other poultry pathogens [Duck plague virus (DPV), Duck tembusu virus (DTMUV), H6 avian influenza virus (H6 AIV), New duck reovirus (NDRV), Newcastle disease virus (NDV), H4 avian influenza virus (H4 AIV), Escherichia coli (E. coli), Muscovy duck reovirus (MDRV), Egg drop syndrome virus (EDSV), Pasteurella multocida (P. multocida)]. The sensitivity result showed that the limits of detection for MDPV, GPV, DuCV, and DAdV-3 were 10, 10, 1 and 10 copies/µl, respectively; The coefficients of variation intra- and inter-method was 1-2%; The range of linear (109 to 103 copies/µL) demonstrated the R2 values for MDPV, GPV, DuCV, and DAdV-3 as 0.9975, 0.998, 0.9964, and 0.996, respectively. The quadruplex real time quantitative PCR method efficiency was 90.30%, 101.10%, 90.72%, and 90.57% for MDPV, GPV, DuCV, and DAdV-3, respectively. 396 clinical specimens collected in some duck sausages from June 2022 to July 2023 were simultaneously detected using the established quadruplex real time quantitative PCR method and the reported assays. The detection rates for MDPV, GPV, DuCV, and DAdV-3 were 8.33% (33/396), 17.93% (71/396), 33.58% (133/396), and 29.04% (115/396), respectively. The agreement between these assays was greater than 99.56%.DiscussionThe developed quadruplex real-time quantitative PCR assay can accurately detect these four viruses infecting ducks, providing a rapid, sensitive, specific and accurate technique for clinical testing.
Duck adenovirus Type 3 (DAdV-3) severely affects the health of ducks; however, its pathogenicity in chickens remains unknown. The objectives of this study were to evaluate the pathogenicity and major pathological changes caused by DAdV-3 in chickens. Viral DNA was extracted from the liver of the Muscovy duck, and the fiber-2 and hexon fragments of DAdV-3 were amplified through polymerase chain reaction (PCR). The evolutionary tree revealed that the isolated virus belonged to DAdV-3, and it was named HE-AN-2022. The mortality rate of chicks that received inoculation with DAdV-3 subcutaneously via the neck was 100%, while the mortality rate for eye–nose drop inoculation was correlated with the numbers of infection, with 26.7% of chicks dying as a result of exposure to multiple infections. The main symptoms exhibited prior to death were hepatitis–hydropericardium syndrome (HHS), ulceration of the glandular stomach, and a swollen bursa with petechial hemorrhages. A histopathological examination revealed swelling, necrosis, lymphocyte infiltration, and basophilic inclusion bodies in multiple organs. Meanwhile, the results of quantitative real-time PCR (qPCR) demonstrated that DAdV-3 could affect most of the organs in chickens, with the gizzard, glandular stomach, bursa, spleen, and liver being the most susceptible to infection. The surviving chicks had extremely high antibody levels. After the chickens were infected with DAdV-3 derived from Muscovy ducks, no amino acid mutation was observed in the major mutation regions of the virus, which were ORF19B, ORF66, and ORF67. On the basis of our findings, we concluded that DAdV-3 infection is possible in chickens, and that it causes classic HHS with ulceration of the glandular stomach and a swollen bursa with petechial hemorrhages, leading to high mortality in chickens. The major variation domains did not change in Muscovy ducks or in chickens after infection. This is the first study to report DAdV-3 in chickens, providing a new basis for preventing and controlling this virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.