Serratia marcescens produced a brown pigment when grown in minimal medium in the presence of tyrosine and high concentrations of copper(II) ion. The pigment was not related to the melanin pigments, but was similar to the pigment produced by autooxidation and polymerization of 3,4-dihydroxyphenylacetate, which is synthesized in S. marcescens from tyrosine through the 3,4-dihydroxyphenylacetate catabolic pathway. The enzymes of this pathway were induced under pigment production conditions; however, 3,4-dihydroxyphenylacetate 2,3-dioxygenase remained at low activity levels, permitting the accumulation and excretion of the substrate. Mutants unable to use tyrosine as a sole carbon and energy source were able to produce brown pigments only if the step blocked by the mutation was after the synthesis of 3,4-dihydroxyphenylacetate. The ability to produce brown pigments was common to all the S. marcescens strains tested.