Tau protein, a neuronal microtubule-associated protein, forms insoluble fibers ("paired helical filaments") in Alzheimer's disease and other tauopathies. Conflicting views on the structure of the fibers have been proposed recently, ranging from mainly R-helical structure to mainly -sheet, or a mixture of mostly random coil and -sheet. We have addressed this issue by studying tau fibers immunopurified from Alzheimer brain tissue by a conformation-specific antibody and comparing them with fibers reassembled from recombinant tau or tau constructs in vitro, using a combination of electron microscopy and spectroscopic methods. Brain-derived fibers and reassembled fibers both exhibit a typical twisted appearance when examined by electron microscopy. The soluble tau protein is a natively unfolded protein dominated by random coil structure, whereas Alzheimer PHFs and reassembled fibers show a shift toward an increase in the level of -structure. The results support a model in which the repeat domain of tau (which lies within the core of PHFs) adopts an increasing level of -structure during aggregation, whereas the N-and C-terminal domains projecting away from the PHF core are mostly random coil.