African swine fever (ASF) is a highly lethal disease of domestic pigs caused by the only known DNA arbovirus. It was first described in Kenya in 1921 and since then many isolates have been collected worldwide. However, although several phylogenetic studies have been carried out to understand the relationships between the isolates, no molecular dating analyses have been achieved so far. In this paper, comprehensive phylogenetic reconstructions were made using newly generated, publicly available sequences of hundreds of ASFV isolates from the past 70 years. Analyses focused on B646L, CP204L, and E183L genes from 356, 251, and 123 isolates, respectively. Phylogenetic analyses were achieved using maximum likelihood and Bayesian coalescence methods. A new lineage-based nomenclature is proposed to designate 35 different clusters. In addition, dating of ASFV origin was carried out from the molecular data sets. To avoid bias, diversity due to positive selection or recombination events was neutralized. The molecular clock analyses revealed that ASFV strains currently circulating have evolved over 300 years, with a time to the most recent common ancestor (TMRCA) in the early 18th century.