The fact that cerebrospinal fluid (CSF) deeply irrigates the brain together with the relative simplicity of sample extraction from patients make this biological fluid the best target for biomarker discovery in neurodegenerative diseases. During the last decade, biomarker discovery has been especially fruitful for the identification new proteins that appear in the CSF of Alzheimer’s disease (AD) patients together with amyloid-β (Aβ42), total tau (T-tau), and phosphorylated tau (P-tau). Thus, several proteins have been already stablished as important biomarkers, due to an increase (i.e., CHI3L1) or a decrease (i.e., VGF) in AD patients’ CSF. Notwithstanding this, only a deep analysis of a database generated with all the changes observed in CSF across multiple proteomic studies, and especially those using state-of-the-art methodologies, may expose those components or metabolic pathways disrupted at different levels in AD. Deep comparative analysis of all the up- and down-regulated proteins across these studies revealed that 66% of the most consistent protein changes in CSF correspond to intracellular proteins. Interestingly, processes such as those associated to glucose metabolism or RXR signaling appeared inversely represented in CSF from AD patients in a significant manner. Herein, we discuss whether certain cellular processes constitute accurate indicators of AD progression by examining CSF. Furthermore, we uncover new CSF AD markers, such as ITAM, PTPRZ or CXL16, identified by this study.