Tetragenococcus halophilus, a halophilic lactic acid bacterium, is often used as a starter culture in the manufacturing of soy sauce. T. halophilus possesses an arginine deiminase system, which is responsible for the accumulation of citrulline, the main precursor of the potential carcinogen ethyl carbamate. In this study, we generated five derivatives lacking arginine deiminase activity from T. halophilus NBRC 12172 by UV irradiation. Using these derivatives as a fermentation starter prevented arginine deimination in soy sauce. DNA sequence analysis of the derivatives revealed that novel IS4 family insertion sequences, designated ISTeha3, ISTeha4, and ISTeha5, were transposed into the region around the arginine deiminase (arc) operon in the mutants. These insertion sequences contain a single open reading frame encoding a putative transposase and 13to 15-bp inverted repeats at both termini, which are adjacent to 7-to 9-bp duplications of the target sequence. Investigation of wild strains isolated from soy sauce mash incapable of arginine deimination also indicated that insertion sequences are involved in the disruption of the arginine deiminase system in T. halophilus. IMPORTANCE Insertion sequences play important roles in bacterial evolution and are frequently utilized in mutagenesis systems. However, the intrinsic insertion sequences of tetragenococci are not well characterized. Here, we identified three active insertion sequences of T. halophilus by transposition into the region around the arc operon. This report provides an example of insertion sequence-mediated generation and evolution of T. halophilus and primary information about their characteristics.